|
@@ -115,21 +115,21 @@ public class TensorflowModel {
|
|
|
}
|
|
|
// return fl;
|
|
|
float[][] result = null;
|
|
|
-
|
|
|
+ Session.Runner runner = null;
|
|
|
// 序列数据
|
|
|
if (this.withSequenceInputs){
|
|
|
Map<String, Tensor<Integer>> sequenceTensorMap = this.wrapSequenceInputs(sequenceValues, numExamples);
|
|
|
-//
|
|
|
-// result = this.session.runner().feed(this.X, inputTensor)
|
|
|
-// .feed(this.Char_ids, sequenceTensorMap.get(this.Char_ids))
|
|
|
-// .feed(this.Pos_ids, sequenceTensorMap.get(this.Pos_ids))
|
|
|
-// .feed("keep_prob", Tensor.create(1.0f, Float.class)) // dropout保留率
|
|
|
-// .fetch(this.SOFT_MAX).run().get(0)
|
|
|
-// .copyTo(new float[numExamples][this.NUM_LABEL]);
|
|
|
+ Tensor<?> t = this.session.runner().feed(this.X, inputTensor)
|
|
|
+ .feed(this.Char_ids, sequenceTensorMap.get(this.Char_ids))
|
|
|
+ .feed(this.Pos_ids, sequenceTensorMap.get(this.Pos_ids))
|
|
|
+ .feed("keep_prob", Tensor.create(1.0f, Float.class)) // dropout保留率
|
|
|
+ .fetch(this.SOFT_MAX).run().get(0);
|
|
|
+ result = t.copyTo(new float[numExamples][this.NUM_LABEL]);
|
|
|
|
|
|
for (Map.Entry<String, Tensor<Integer>> entry : sequenceTensorMap.entrySet()) {
|
|
|
entry.getValue().close();
|
|
|
}
|
|
|
+ t.close();
|
|
|
}else{
|
|
|
result = this.session.runner().feed(this.X, inputTensor)
|
|
|
.feed("keep_prob", Tensor.create(1.0f, Float.class)) // dropout保留率
|
|
@@ -137,8 +137,7 @@ public class TensorflowModel {
|
|
|
.copyTo(new float[numExamples][this.NUM_LABEL]);
|
|
|
}
|
|
|
inputTensor.close();
|
|
|
-
|
|
|
- return fl;
|
|
|
+ return result;
|
|
|
}
|
|
|
|
|
|
|