from sqlalchemy import Column, Integer, Text, String from sqlalchemy.dialects.postgresql import TSVECTOR from pgvector.sqlalchemy import Vector from db.base_class import Base class Trunks(Base): __tablename__ = 'trunks' id = Column(Integer, primary_key=True, index=True) embedding = Column(Vector(1024)) # 假设使用OpenAI的1536维向量 content = Column(Text) file_path = Column(String(255)) content_tsvector = Column(TSVECTOR) def __repr__(self): return f""