from fastapi import APIRouter, HTTPException, Depends
from pydantic import BaseModel, Field, validator
from typing import List, Optional
from service.trunks_service import TrunksService
from utils.text_splitter import TextSplitter
from utils.vector_distance import VectorDistance
from model.response import StandardResponse
from utils.vectorizer import Vectorizer
# from utils.find_text_in_pdf import find_text_in_pdf
import os
DISTANCE_THRESHOLD = 0.8
import logging
import time
from db.session import get_db
from sqlalchemy.orm import Session
from service.kg_node_service import KGNodeService
from service.kg_prop_service import KGPropService
logger = logging.getLogger(__name__)
router = APIRouter(prefix="/text", tags=["Text Search"])
class TextSearchRequest(BaseModel):
text: str
conversation_id: Optional[str] = None
need_convert: Optional[bool] = False
class TextCompareRequest(BaseModel):
sentence: str
text: str
class TextMatchRequest(BaseModel):
text: str = Field(..., min_length=1, max_length=10000, description="需要搜索的文本内容")
@validator('text')
def validate_text(cls, v):
# 保留所有可打印字符、换行符和中文字符
v = ''.join(char for char in v if char.isprintable() or char in '\n\r')
# 转义JSON特殊字符
# 先处理反斜杠,避免后续转义时出现问题
v = v.replace('\\', '\\\\')
# 处理引号和其他特殊字符
v = v.replace('"', '\\"')
v = v.replace('/', '\\/')
# 处理控制字符
v = v.replace('\n', '\\n')
v = v.replace('\r', '\\r')
v = v.replace('\t', '\\t')
v = v.replace('\b', '\\b')
v = v.replace('\f', '\\f')
# 处理Unicode转义
# v = v.replace('\u', '\\u')
return v
class TextCompareMultiRequest(BaseModel):
origin: str
similar: str
class NodePropsSearchRequest(BaseModel):
node_id: int
props_ids: List[int]
@router.post("/search", response_model=StandardResponse)
async def search_text(request: TextSearchRequest):
try:
#判断request.text是否为json格式,如果是,使用JsonToText的convert方法转换为text
if request.text.startswith('{') and request.text.endswith('}'):
from utils.json_to_text import JsonToTextConverter
converter = JsonToTextConverter()
request.text = converter.convert(request.text)
# 使用TextSplitter拆分文本
sentences = TextSplitter.split_text(request.text)
if not sentences:
return StandardResponse(success=True, data={"answer": "", "references": []})
# 初始化服务和结果列表
trunks_service = TrunksService()
result_sentences = []
all_references = []
reference_index = 1
# 根据conversation_id获取缓存结果
cached_results = trunks_service.get_cached_result(request.conversation_id) if request.conversation_id else []
for sentence in sentences:
# if request.need_convert:
sentence = sentence.replace("\n", "
")
if len(sentence) < 10:
result_sentences.append(sentence)
continue
if cached_results:
# 如果有缓存结果,计算向量距离
min_distance = float('inf')
best_result = None
sentence_vector = Vectorizer.get_embedding(sentence)
for cached_result in cached_results:
content_vector = cached_result['embedding']
distance = VectorDistance.calculate_distance(sentence_vector, content_vector)
if distance < min_distance:
min_distance = distance
best_result = {**cached_result, 'distance': distance}
if best_result and best_result['distance'] < DISTANCE_THRESHOLD:
search_results = [best_result]
else:
search_results = []
else:
# 如果没有缓存结果,进行向量搜索
search_results = trunks_service.search_by_vector(
text=sentence,
limit=1,
type='trunk'
)
# 处理搜索结果
for search_result in search_results:
distance = search_result.get("distance", DISTANCE_THRESHOLD)
if distance >= DISTANCE_THRESHOLD:
result_sentences.append(sentence)
continue
# 检查是否已存在相同引用
existing_ref = next((ref for ref in all_references if ref["id"] == search_result["id"]), None)
current_index = reference_index
if existing_ref:
current_index = int(existing_ref["index"])
else:
# 添加到引用列表
reference = {
"index": str(reference_index),
"id": search_result["id"],
"content": search_result["content"],
"file_path": search_result.get("file_path", ""),
"title": search_result.get("title", ""),
"distance": distance,
"referrence": search_result.get("referrence", "")
}
all_references.append(reference)
reference_index += 1
# 添加引用标记
if sentence.endswith('
'):
# 如果有多个
,在所有
前添加^[current_index]^
result_sentence = sentence.replace('
', f'^[{current_index}]^
')
else:
# 直接在句子末尾添加^[current_index]^
result_sentence = f'{sentence}^[{current_index}]^'
result_sentences.append(result_sentence)
# 组装返回数据
response_data = {
"answer": result_sentences,
"references": all_references
}
return StandardResponse(success=True, data=response_data)
except Exception as e:
logger.error(f"Text search failed: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/match", response_model=StandardResponse)
async def match_text(request: TextCompareRequest):
try:
sentences = TextSplitter.split_text(request.text)
sentence_vector = Vectorizer.get_embedding(request.sentence)
min_distance = float('inf')
best_sentence = ""
result_sentences = []
for temp in sentences:
result_sentences.append(temp)
if len(temp) < 10:
continue
temp_vector = Vectorizer.get_embedding(temp)
distance = VectorDistance.calculate_distance(sentence_vector, temp_vector)
if distance < min_distance and distance < DISTANCE_THRESHOLD:
min_distance = distance
best_sentence = temp
for i in range(len(result_sentences)):
result_sentences[i] = {"sentence": result_sentences[i], "matched": False}
if result_sentences[i]["sentence"] == best_sentence:
result_sentences[i]["matched"] = True
return StandardResponse(success=True, records=result_sentences)
except Exception as e:
logger.error(f"Text comparison failed: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/mr_search", response_model=StandardResponse)
async def mr_search_text_content(request: TextMatchRequest):
try:
# 初始化服务
trunks_service = TrunksService()
# 获取文本向量并搜索相似内容
search_results = trunks_service.search_by_vector(
text=request.text,
limit=10,
type="mr"
)
# 处理搜索结果
records = []
for result in search_results:
distance = result.get("distance", DISTANCE_THRESHOLD)
if distance >= DISTANCE_THRESHOLD:
continue
# 添加到引用列表
record = {
"content": result["content"],
"file_path": result.get("file_path", ""),
"title": result.get("title", ""),
"distance": distance,
}
records.append(record)
# 组装返回数据
response_data = {
"records": records
}
return StandardResponse(success=True, data=response_data)
except Exception as e:
logger.error(f"Mr search failed: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/mr_match", response_model=StandardResponse)
async def compare_text(request: TextCompareMultiRequest):
start_time = time.time()
try:
# 拆分两段文本
origin_sentences = TextSplitter.split_text(request.origin)
similar_sentences = TextSplitter.split_text(request.similar)
end_time = time.time()
logger.info(f"mr_match接口处理文本耗时: {(end_time - start_time) * 1000:.2f}ms")
# 初始化结果列表
origin_results = []
# 过滤短句并预计算向量
valid_origin_sentences = [(sent, len(sent) >= 10) for sent in origin_sentences]
valid_similar_sentences = [(sent, len(sent) >= 10) for sent in similar_sentences]
# 初始化similar_results,所有matched设为False
similar_results = [{"sentence": sent, "matched": False} for sent, _ in valid_similar_sentences]
# 批量获取向量
origin_vectors = {}
similar_vectors = {}
origin_batch = [sent for sent, is_valid in valid_origin_sentences if is_valid]
similar_batch = [sent for sent, is_valid in valid_similar_sentences if is_valid]
if origin_batch:
origin_embeddings = [Vectorizer.get_embedding(sent) for sent in origin_batch]
origin_vectors = dict(zip(origin_batch, origin_embeddings))
if similar_batch:
similar_embeddings = [Vectorizer.get_embedding(sent) for sent in similar_batch]
similar_vectors = dict(zip(similar_batch, similar_embeddings))
end_time = time.time()
logger.info(f"mr_match接口处理向量耗时: {(end_time - start_time) * 1000:.2f}ms")
# 处理origin文本
for origin_sent, is_valid in valid_origin_sentences:
if not is_valid:
origin_results.append({"sentence": origin_sent, "matched": False})
continue
origin_vector = origin_vectors[origin_sent]
matched = False
# 优化的相似度计算
for i, similar_result in enumerate(similar_results):
if similar_result["matched"]:
continue
similar_sent = similar_result["sentence"]
if len(similar_sent) < 10:
continue
similar_vector = similar_vectors.get(similar_sent)
if not similar_vector:
continue
distance = VectorDistance.calculate_distance(origin_vector, similar_vector)
if distance < DISTANCE_THRESHOLD:
matched = True
similar_results[i]["matched"] = True
break
origin_results.append({"sentence": origin_sent, "matched": matched})
response_data = {
"origin": origin_results,
"similar": similar_results
}
end_time = time.time()
logger.info(f"mr_match接口耗时: {(end_time - start_time) * 1000:.2f}ms")
return StandardResponse(success=True, data=response_data)
except Exception as e:
end_time = time.time()
logger.error(f"Text comparison failed: {str(e)}")
logger.info(f"mr_match接口耗时: {(end_time - start_time) * 1000:.2f}ms")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/eb_search", response_model=StandardResponse)
async def node_props_search(request: NodePropsSearchRequest, db: Session = Depends(get_db)):
try:
start_time = time.time()
# 初始化服务
trunks_service = TrunksService()
node_service = KGNodeService(db)
prop_service = KGPropService(db)
# 根据node_id查询节点信息
node = node_service.get_node(request.node_id)
if not node:
raise ValueError(f"节点不存在: {request.node_id}")
node_name = node.get('name', '')
# 初始化结果
result = {
"id": request.node_id,
"name": node_name,
"category": node.get('category', ''),
"props": [],
"files": [],
"distance": 0
}
# 遍历props_ids查询属性信息
for prop_id in request.props_ids:
prop = prop_service.get_props_by_id(prop_id)
if not prop:
logger.warning(f"属性不存在: {prop_id}")
continue
prop_title = prop.get('prop_title', '')
prop_value = prop.get('prop_value', '')
# 拆分属性值为句子
sentences = TextSplitter.split_text(prop_value)
prop_result = {
"id": prop_id,
"category": prop.get('category', 0),
"prop_name": prop.get('prop_name', ''),
"prop_value": prop_value,
"prop_title": prop_title,
"type": prop.get('type', 1)
}
# 添加到结果中
result["props"].append(prop_result)
# 处理属性值中的句子
result_sentences = []
all_references = []
reference_index = 1
# 对每个句子进行向量搜索
i = 0
while i < len(sentences):
original_sentence = sentences[i]
sentence = original_sentence
# 如果当前句子长度小于10且不是最后一句,则与下一句合并
if len(sentence) < 10 and i + 1 < len(sentences):
next_sentence = sentences[i + 1]
combined_sentence = sentence + " " + next_sentence
# 添加原短句到结果,flag为空
result_sentences.append({
"sentence": sentence,
"flag": ""
})
# 使用合并后的句子进行搜索
search_text = f"{node_name}:{prop_title}:{combined_sentence}"
i += 1 # 跳过下一句,因为已经合并使用
elif len(sentence) < 10:
# 如果是最后一句且长度小于10,直接添加到结果,flag为空
result_sentences.append({
"sentence": sentence,
"flag": ""
})
i += 1
continue
else:
# 句子长度足够,直接使用
search_text = f"{node_name}:{prop_title}:{sentence}"
i += 1
# 进行向量搜索
search_results = trunks_service.search_by_vector(
text=search_text,
limit=1,
type='trunk'
)
# 处理搜索结果
if not search_results:
# 没有搜索结果,添加原句子,flag为空
result_sentences.append({
"sentence": sentence,
"flag": ""
})
continue
for search_result in search_results:
distance = search_result.get("distance", DISTANCE_THRESHOLD)
if distance >= DISTANCE_THRESHOLD:
# 距离过大,添加原句子,flag为空
result_sentences.append({
"sentence": sentence,
"flag": ""
})
continue
# 检查是否已存在相同引用
existing_ref = next((ref for ref in all_references if ref["id"] == search_result["id"]), None)
current_index = reference_index
if existing_ref:
current_index = int(existing_ref["index"])
else:
# 添加到引用列表
reference = {
"index": str(reference_index),
"id": search_result["id"],
"content": search_result["content"],
"file_path": search_result.get("file_path", ""),
"title": search_result.get("title", ""),
"distance": distance,
"page_no": search_result.get("page_no", ""),
"referrence": search_result.get("referrence", "")
}
all_references.append(reference)
reference_index += 1
# 添加句子和引用标记(作为单独的flag字段)
result_sentences.append({
"sentence": sentence,
"flag": str(current_index)
})
# 更新属性值,添加引用信息
if all_references:
prop_result["references"] = all_references
# 将处理后的句子添加到结果中
if result_sentences:
prop_result["answer"] = result_sentences
# 处理所有引用中的文件信息
all_files = set()
for prop_result in result["props"]:
if "references" in prop_result:
for ref in prop_result["references"]:
referrence = ref.get("referrence", "")
if referrence and "/books/" in referrence:
# 提取/books/后面的文件名
file_name = referrence.split("/books/")[-1]
if file_name:
# 根据文件名后缀确定文件类型
file_type = ""
if file_name.lower().endswith(".pdf"):
file_type = "pdf"
elif file_name.lower().endswith(".doc") or file_name.lower().endswith(".docx"):
file_type = "doc"
elif file_name.lower().endswith(".xls") or file_name.lower().endswith(".xlsx"):
file_type = "excel"
elif file_name.lower().endswith(".ppt") or file_name.lower().endswith(".pptx"):
file_type = "ppt"
else:
file_type = "other"
all_files.add((file_name, file_type))
# 将文件信息添加到结果中
result["files"] = [{
"file_name": file_name,
"file_type": file_type
} for file_name, file_type in all_files]
end_time = time.time()
logger.info(f"node_props_search接口耗时: {(end_time - start_time) * 1000:.2f}ms")
return StandardResponse(success=True, data=result)
except Exception as e:
logger.error(f"Node props search failed: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
text_search_router = router