graph_router_new.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. import logging
  2. import sys,os
  3. import traceback
  4. from agent.cdss.capbility import CDSSCapability
  5. from agent.cdss.models.schemas import CDSSInput, CDSSInt, CDSSText
  6. from model.response import StandardResponse
  7. from service.cdss_service import CdssService
  8. from service.kg_node_service import KGNodeService
  9. from utils import DeepseekUtil
  10. current_path = os.getcwd()
  11. sys.path.append(current_path)
  12. import time
  13. from fastapi import APIRouter, Depends, Query
  14. from typing import Optional, List
  15. import sys
  16. sys.path.append('..')
  17. from utils.agent import call_chat_api,get_conversation_id
  18. import json
  19. router = APIRouter(tags=["Knowledge Graph"])
  20. service = CdssService()
  21. logger = logging.getLogger(__name__)
  22. @router.post("/knowledge/disease/recommend", response_model=StandardResponse)
  23. async def recommend(payload: dict):
  24. try:
  25. start_time = time.time()
  26. app_id = "256fd853-60b0-4357-b11b-8114b4e90ae0"
  27. conversation_id = get_conversation_id(app_id)
  28. desc = "主诉:" + payload["chief"]
  29. if "symptom" in payload:
  30. desc += "\n现病史:" + payload["symptom"]
  31. prompt = '''## 核心能力
  32. 1. 医学语义理解:
  33. - 精准解析临床表现描述
  34. - 将口语化表达转换为ICD-11标准术语
  35. - 完整提取症状特征(性质/部位/放射等),保持症状描述的临床完整性
  36. 2. 专业能力:
  37. - 精通ICD-11症状学术语体系
  38. - 识别症状关联性
  39. - 具备临床鉴别诊断思维
  40. ## 输出要求
  41. - 仅输出JSON格式结果,禁止添加解释性文字
  42. - 非症状不要抽取
  43. - 症状术语必须标准化
  44. - 尽量保留原始症状的临床特征(如部位、性质、放射等)
  45. - 抽取的症状应该简洁明了,尽量保持在5个字符以内,最多不宜超过7个字符。如果超过可以分多个症状词进行抽取。
  46. ## 处理流程
  47. 1. 接收患者主诉文本
  48. 2. 识别并提取所有症状描述
  49. 3. 转换为ICD-11标准术语
  50. 4. 结构化输出症状列表
  51. 示例1:
  52. 输入:突然感觉胸口压榨样疼痛,持续不缓解,向左肩和下颌放射,伴大汗、恶心,已经30分钟了。
  53. 输出: { "symptoms": ["胸痛", "左肩放射痛", "下颌放射痛","大汗","恶心"] }
  54. 本次用户输入:
  55. '''
  56. result = DeepseekUtil.chat(prompt+desc)
  57. json_data = json.loads(result)
  58. keyword = " ".join(json_data["symptoms"])
  59. sex = str(payload["sex"]) if "sex" in payload else None
  60. age = int(payload["age"]) if "age" in payload else None
  61. department = payload["dept"][0]["name"] if "dept" in payload and len(payload["dept"]) > 0 else None
  62. result = await neighbor_search(keyword=keyword, sex=sex, age=age, department=department)
  63. end_time = time.time()
  64. print(f"recommend执行完成,耗时:{end_time - start_time:.2f}秒")
  65. return result
  66. except Exception as e:
  67. traceback.print_exc()
  68. logger.error(f"recommend failed: {str(e)}")
  69. return StandardResponse(
  70. success=False,
  71. errorCode=500,
  72. errorMsg=str(e)
  73. )
  74. async def recommend2(
  75. chief: str,
  76. present_illness: Optional[str] = None,
  77. sex: Optional[str] = None,
  78. age: Optional[int] = None,
  79. department: Optional[str] = None,
  80. ):
  81. start_time = time.time()
  82. app_id = "256fd853-60b0-4357-b11b-8114b4e90ae0"
  83. conversation_id = get_conversation_id(app_id)
  84. desc = "主诉:"+chief
  85. if present_illness:
  86. desc+="\n现病史:" + present_illness
  87. result = call_chat_api(app_id, conversation_id, desc)
  88. json_data = json.loads(result)
  89. keyword = " ".join(json_data["symptoms"])
  90. result = await neighbor_search(keyword=keyword,sex=sex,age=age,department=department)
  91. end_time = time.time()
  92. print(f"recommend执行完成,耗时:{end_time - start_time:.2f}秒")
  93. return result
  94. @router.get("/neighbor_search", response_model=StandardResponse)
  95. async def neighbor_search(
  96. keyword: str = Query(..., min_length=2),
  97. sex: Optional[str] = None,
  98. age: Optional[int] = None,
  99. department: Optional[str] = None
  100. ):
  101. """
  102. 根据关键词和属性过滤条件搜索图谱节点
  103. """
  104. try:
  105. keywords = keyword.split(" ")
  106. record = CDSSInput(
  107. pat_age=CDSSInt(type="month", value=age),
  108. pat_sex=CDSSText(type="sex", value=sex),
  109. chief_complaint=keywords,
  110. department=CDSSText(type='department', value=department)
  111. )
  112. # 使用从main.py导入的capability实例处理CDSS逻辑
  113. output = capability.process(input=record)
  114. output.diagnosis.value = [{"name":key,"count":value["count"],"score":value["score"],"symptoms":value["symptoms"]
  115. } for key,value in output.diagnosis.value.items()]
  116. result = {}
  117. if len(output.diagnosis.value)>0:
  118. result = service.get_disease_detail(output.diagnosis.value[0]['name'], '疾病')
  119. return StandardResponse(
  120. success=True,
  121. data={"可能诊断":output.diagnosis.value,"症状":keywords,"disease_detail":result}
  122. )
  123. except Exception as e:
  124. traceback.print_exc()
  125. logger.error(f"get_disease_detail failed: {str(e)}")
  126. return StandardResponse(
  127. success=False,
  128. errorCode=500,
  129. errorMsg=str(e)
  130. )
  131. @router.get("/knowledge/disease/{disease_name}/detail", response_model=StandardResponse)
  132. async def get_disease_detail(
  133. disease_name: str
  134. ):
  135. try:
  136. result = service.get_disease_detail(disease_name,'疾病')
  137. return StandardResponse(success=True, data=result)
  138. except Exception as e:
  139. traceback.print_exc()
  140. logger.error(f"get_disease_detail failed: {str(e)}")
  141. return StandardResponse(
  142. success=False,
  143. errorCode=500,
  144. errorMsg=str(e)
  145. )
  146. capability = CDSSCapability()
  147. graph_router = router