12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- from cdss.models.schemas import CDSSDict, CDSSInput,CDSSInt,CDSSOutput,CDSSText
- from cdss.libs.cdss_helper import CDSSHelper
- # CDSS能力核心类,负责处理临床决策支持系统的核心逻辑
- class CDSSCapability:
- # CDSS帮助类实例
- cdss_helper: CDSSHelper = None
- def __init__(self):
- # 初始化CDSS帮助类
- self.cdss_helper = CDSSHelper()
-
- # 核心处理方法,接收输入数据并返回决策支持结果
- # @param input: CDSS输入数据
- # @param embeding_search: 是否使用embedding搜索,默认为True
- # @return: CDSS输出结果
- def process(self, input: CDSSInput, embeding_search:bool = True) -> CDSSOutput:
- start_nodes = []
- # 获取主诉信息
- chief_complaint = input.get_value("chief_complaint")
- # 初始化输出对象
- output = CDSSOutput()
- # 如果存在主诉信息,则进行处理
- if chief_complaint:
- for keyword in chief_complaint:
- # 使用帮助类进行节点搜索,查找与关键词相关的节点
- results = self.cdss_helper.node_search(
- keyword, limit=10, node_type="word"
- )
- for item in results:
- if item['score']>1.9:
- start_nodes.append(item['id'])
- print("cdss start from :", start_nodes)
- # 使用帮助类进行CDSS路径遍历,最大跳数为2
- result = self.cdss_helper.cdss_travel(input, start_nodes,max_hops=2)
-
- for item in result["details"]:
- name, data = item
- output.diagnosis.value[name] = data
- print(f"{name} {data['score'] *100:.2f} %")
- for disease in data["diseases"]:
- print(f"\t疾病:{disease[0]} ")
- for check in data["checks"]:
- print(f"\t检查:{check[0]} ")
- for drug in data["drugs"]:
- print(f"\t药品:{drug[0]} ")
- # 输出最终推荐的检查和药品信息
- print("最终推荐的检查和药品如下:")
- for item in result["checks"][:5]:
- item[1]['score'] = item[1]['count'] / result["total_checks"]
- output.checks.value[item[0]] = item[1]
- # print(f"\t检查:{item[0]} {item[1]['score'] * 100:.2f} %")
- # print(f"\t检查:{item[0]} {item[1]['count'] / result["total_checks"] * 100:.2f} %")
-
- for item in result["drugs"][:5]:
- item[1]['score'] = item[1]['count'] / result["total_checks"]
- output.drugs.value[item[0]] = item[1]
- #print(f"\t药品:{item[0]} {item[1]['count'] / result["total_drugs"] * 100:.2f} %")
- return output
|