cdss_helper.py 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699
  1. from hmac import new
  2. import os
  3. import sys
  4. import logging
  5. import json
  6. import time
  7. from service.kg_edge_service import KGEdgeService
  8. from db.session import get_db
  9. from service.kg_node_service import KGNodeService
  10. from service.kg_prop_service import KGPropService
  11. from utils.cache import Cache
  12. current_path = os.getcwd()
  13. sys.path.append(current_path)
  14. from community.graph_helper import GraphHelper
  15. from typing import List
  16. from agent.cdss.models.schemas import CDSSInput
  17. from config.site import SiteConfig
  18. import networkx as nx
  19. import pandas as pd
  20. logger = logging.getLogger(__name__)
  21. current_path = os.getcwd()
  22. sys.path.append(current_path)
  23. # 图谱数据缓存路径(由dump_graph_data.py生成)
  24. CACHED_DATA_PATH = os.path.join(current_path, 'community', 'web', 'cached_data')
  25. class CDSSHelper(GraphHelper):
  26. def node_search(self, node_id=None, node_type=None, filters=None, limit=1, min_degree=None):
  27. kg_node_service = KGNodeService(next(get_db()))
  28. es_result = kg_node_service.search_title_index("graph_entity_index", node_id, limit)
  29. results = []
  30. for item in es_result:
  31. n = self.graph.nodes.get(item["id"])
  32. score = item["score"]
  33. if n:
  34. results.append({
  35. 'id': item["title"],
  36. 'score': score,
  37. "name": item["title"],
  38. })
  39. return results
  40. def _load_entity_data(self):
  41. config = SiteConfig()
  42. # CACHED_DATA_PATH = config.get_config("CACHED_DATA_PATH")
  43. print("load entity data")
  44. # 这里设置了读取的属性
  45. data = {"id": [], "name": [], "type": [],"is_symptom": [], "sex": [], "age": []}
  46. if not os.path.exists(os.path.join(CACHED_DATA_PATH, 'entities_med.json')):
  47. return []
  48. with open(os.path.join(CACHED_DATA_PATH, 'entities_med.json'), "r", encoding="utf-8") as f:
  49. entities = json.load(f)
  50. for item in entities:
  51. #如果id已经存在,则跳过
  52. # if item[0] in data["id"]:
  53. # print(f"skip {item[0]}")
  54. # continue
  55. data["id"].append(int(item[0]))
  56. data["name"].append(item[1]["name"])
  57. data["type"].append(item[1]["type"])
  58. self._append_entity_attribute(data, item, "sex")
  59. self._append_entity_attribute(data, item, "age")
  60. self._append_entity_attribute(data, item, "is_symptom")
  61. # item[1]["id"] = item[0]
  62. # item[1]["name"] = item[0]
  63. # attrs = item[1]
  64. # self.graph.add_node(item[0], **attrs)
  65. self.entity_data = pd.DataFrame(data)
  66. self.entity_data.set_index("id", inplace=True)
  67. print("load entity data finished")
  68. def _append_entity_attribute(self, data, item, attr_name):
  69. if attr_name in item[1]:
  70. value = item[1][attr_name].split(":")
  71. if len(value) < 2:
  72. data[attr_name].append(value[0])
  73. else:
  74. data[attr_name].append(value[1])
  75. else:
  76. data[attr_name].append("")
  77. def _load_relation_data(self):
  78. config = SiteConfig()
  79. # CACHED_DATA_PATH = config.get_config("CACHED_DATA_PATH")
  80. print("load relationship data")
  81. for i in range(47):
  82. if not os.path.exists(os.path.join(CACHED_DATA_PATH, f"relationship_med_{i}.json")):
  83. continue
  84. if os.path.exists(os.path.join(CACHED_DATA_PATH, f"relationship_med_{i}.json")):
  85. print(f"load entity data {CACHED_DATA_PATH}\\relationship_med_{i}.json")
  86. with open(f"{CACHED_DATA_PATH}\\relationship_med_{i}.json", "r", encoding="utf-8") as f:
  87. data = {"src": [], "dest": [], "type": [], "weight": []}
  88. relations = json.load(f)
  89. for item in relations:
  90. data["src"].append(int(item[0]))
  91. data["dest"].append(int(item[2]))
  92. data["type"].append(item[4]["type"])
  93. if "order" in item[4]:
  94. order = item[4]["order"].split(":")
  95. if len(order) < 2:
  96. data["weight"].append(order[0])
  97. else:
  98. data["weight"].append(order[1])
  99. else:
  100. data["weight"].append(1)
  101. self.relation_data = pd.concat([self.relation_data, pd.DataFrame(data)], ignore_index=True)
  102. def build_graph(self):
  103. self.entity_data = pd.DataFrame(
  104. {"id": [], "name": [], "type": [], "sex": [], "allowed_age_range": []})
  105. self.relation_data = pd.DataFrame({"src": [], "dest": [], "type": [], "weight": []})
  106. self._load_entity_data()
  107. self._load_relation_data()
  108. self._load_local_data()
  109. self.graph = nx.from_pandas_edgelist(self.relation_data, "src", "dest", edge_attr=True,
  110. create_using=nx.DiGraph())
  111. nx.set_node_attributes(self.graph, self.entity_data.to_dict(orient="index"))
  112. # print(self.graph.in_edges('1257357',data=True))
  113. def _load_local_data(self):
  114. # 这里加载update数据和权重数据
  115. config = SiteConfig()
  116. self.update_data_path = config.get_config('UPDATE_DATA_PATH')
  117. self.factor_data_path = config.get_config('FACTOR_DATA_PATH')
  118. print(f"load update data from {self.update_data_path}")
  119. for root, dirs, files in os.walk(self.update_data_path):
  120. for file in files:
  121. file_path = os.path.join(root, file)
  122. if file_path.endswith(".json") and file.startswith("ent"):
  123. self._load_update_entity_json(file_path)
  124. if file_path.endswith(".json") and file.startswith("rel"):
  125. self._load_update_relationship_json(file_path)
  126. def _load_update_entity_json(self, file):
  127. '''load json data from file'''
  128. print(f"load entity update data from {file}")
  129. # 这里加载update数据,update数据是一个json文件,格式同cached data如下:
  130. with open(file, "r", encoding="utf-8") as f:
  131. entities = json.load(f)
  132. for item in entities:
  133. original_data = self.entity_data[self.entity_data.index == item[0]]
  134. if original_data.empty:
  135. continue
  136. original_data = original_data.iloc[0]
  137. id = int(item[0])
  138. name = item[1]["name"] if "name" in item[1] else original_data['name']
  139. type = item[1]["type"] if "type" in item[1] else original_data['type']
  140. allowed_sex_list = item[1]["allowed_sex_list"] if "allowed_sex_list" in item[1] else original_data[
  141. 'allowed_sex_list']
  142. allowed_age_range = item[1]["allowed_age_range"] if "allowed_age_range" in item[1] else original_data[
  143. 'allowed_age_range']
  144. self.entity_data.loc[id, ["name", "type", "allowed_sex_list", "allowed_age_range"]] = [name, type,
  145. allowed_sex_list,
  146. allowed_age_range]
  147. def _load_update_relationship_json(self, file):
  148. '''load json data from file'''
  149. print(f"load relationship update data from {file}")
  150. with open(file, "r", encoding="utf-8") as f:
  151. relations = json.load(f)
  152. for item in relations:
  153. data = {}
  154. original_data = self.relation_data[(self.relation_data['src'] == data['src']) &
  155. (self.relation_data['dest'] == data['dest']) &
  156. (self.relation_data['type'] == data['type'])]
  157. if original_data.empty:
  158. continue
  159. original_data = original_data.iloc[0]
  160. data["src"] = int(item[0])
  161. data["dest"] = int(item[2])
  162. data["type"] = item[4]["type"]
  163. data["weight"] = item[4]["weight"] if "weight" in item[4] else original_data['weight']
  164. self.relation_data.loc[(self.relation_data['src'] == data['src']) &
  165. (self.relation_data['dest'] == data['dest']) &
  166. (self.relation_data['type'] == data['type']), 'weight'] = data["weight"]
  167. def check_sex_allowed(self, node, sex):
  168. # 性别过滤,假设疾病节点有一个属性叫做allowed_sex_type,值为“0,1,2”,分别代表未知,男,女
  169. sex_allowed = self.graph.nodes[node].get('sex', None)
  170. #sexProps = self.propService.get_props_by_ref_id(node, 'sex')
  171. #if len(sexProps) > 0 and sexProps[0]['prop_value'] is not None and sexProps[0][
  172. #'prop_value'] != input.pat_sex.value:
  173. #continue
  174. if sex_allowed:
  175. if len(sex_allowed) == 0:
  176. # 如果性别列表为空,那么默认允许所有性别
  177. return True
  178. sex_allowed_list = sex_allowed.split(',')
  179. if sex not in sex_allowed_list:
  180. # 如果性别不匹配,跳过
  181. return False
  182. return True
  183. def check_age_allowed(self, node, age):
  184. # 年龄过滤,假设疾病节点有一个属性叫做allowed_age_range,值为“6-88”,代表年龄在0-88月之间是允许的
  185. # 如果说年龄小于6岁,那么我们就认为是儿童,所以儿童的年龄范围是0-6月
  186. age_allowed = self.graph.nodes[node].get('age', None)
  187. if age_allowed:
  188. if len(age_allowed) == 0:
  189. # 如果年龄范围为空,那么默认允许所有年龄
  190. return True
  191. age_allowed_list = age_allowed.split('-')
  192. age_min = int(age_allowed_list[0])
  193. age_max = int(age_allowed_list[-1])
  194. if age_max ==0:
  195. return True
  196. if age >= age_min and age < age_max:
  197. # 如果年龄范围正常,那么返回True
  198. return True
  199. else:
  200. # 如果没有设置年龄范围,那么默认返回True
  201. return True
  202. return False
  203. def check_diease_allowed(self, node):
  204. is_symptom = self.graph.nodes[node].get('is_symptom', None)
  205. if is_symptom == "是":
  206. return False
  207. return True
  208. propService = KGPropService(next(get_db()))
  209. cache = Cache()
  210. def cdss_travel(self, input: CDSSInput, start_nodes: List, max_hops=3):
  211. """
  212. 基于输入的症状节点,在知识图谱中进行遍历,查找相关疾病、科室、检查和药品
  213. 参数:
  214. input: CDSSInput对象,包含患者的基本信息(年龄、性别等)
  215. start_nodes: 症状节点名称列表,作为遍历的起点
  216. max_hops: 最大遍历深度,默认为3
  217. 返回值:
  218. 返回一个包含以下信息的字典:
  219. - details: 按科室汇总的结果
  220. - diags: 按相关性排序的疾病列表
  221. - checks: 按出现频率排序的检查列表
  222. - drugs: 按出现频率排序的药品列表
  223. - total_diags: 疾病总数
  224. - total_checks: 检查总数
  225. - total_drugs: 药品总数
  226. 主要步骤:
  227. 1. 初始化允许的节点类型和关系类型
  228. 2. 将症状名称转换为节点ID
  229. 3. 遍历图谱查找相关疾病(STEP 1)
  230. 4. 查找疾病对应的科室、检查和药品(STEP 2)
  231. 5. 按科室汇总结果(STEP 3)
  232. 6. 对结果进行排序和统计(STEP 4-6)
  233. """
  234. # 定义允许的节点类型,包括科室、疾病、药品、检查和症状
  235. # 这些类型用于后续的节点过滤和路径查找
  236. DEPARTMENT = ['科室', 'Department']
  237. DIESEASE = ['疾病', 'Disease']
  238. DRUG = ['药品', 'Drug']
  239. CHECK = ['检查', 'Check']
  240. SYMPTOM = ['症状', 'Symptom']
  241. #allowed_types = DEPARTMENT + DIESEASE + DRUG + CHECK + SYMPTOM
  242. allowed_types = DEPARTMENT + DIESEASE + SYMPTOM
  243. # 定义允许的关系类型,包括has_symptom、need_check、recommend_drug、belongs_to
  244. # 这些关系类型用于后续的路径查找和过滤
  245. allowed_links = ['has_symptom', 'need_check', 'recommend_drug', 'belongs_to']
  246. # 将输入的症状名称转换为节点ID
  247. # 由于可能存在同名节点,转换后的节点ID数量可能大于输入的症状数量
  248. node_ids = []
  249. node_id_names = {}
  250. # start_nodes里面重复的症状,去重同样的症状
  251. start_nodes = list(set(start_nodes))
  252. for node in start_nodes:
  253. #print(f"searching for node {node}")
  254. result = self.entity_data[self.entity_data['name'] == node]
  255. #print(f"searching for node {result}")
  256. for index, data in result.iterrows():
  257. node_id_names[index] = data["name"]
  258. node_ids = node_ids + [index]
  259. #print(f"start travel from {node_id_names}")
  260. # 这里是一个队列,用于存储待遍历的症状:
  261. node_ids_filtered = []
  262. for node in node_ids:
  263. if self.graph.has_node(node):
  264. node_ids_filtered.append(node)
  265. else:
  266. logger.debug(f"node {node} not found")
  267. node_ids = node_ids_filtered
  268. results = self.step1(node_ids,node_id_names, input, allowed_types, allowed_links,max_hops,DIESEASE)
  269. self.printValidDisease(results, start_nodes)
  270. # 调用step2方法处理科室、检查和药品信息
  271. results = self.step2(results)
  272. # STEP 3: 对于结果按照科室维度进行汇总
  273. final_results = self.step3(results)
  274. sorted_final_results = self.step4(final_results)
  275. # STEP 5: 对于final_results里面的diseases, checks和durgs统计全局出现的次数并且按照次数降序排序
  276. sorted_score_diags,total_diags = self.step5(final_results, input)
  277. # STEP 6: 整合数据并返回
  278. # if "department" in item.keys():
  279. # final_results["department"] = list(set(final_results["department"]+item["department"]))
  280. # if "diseases" in item.keys():
  281. # final_results["diseases"] = list(set(final_results["diseases"]+item["diseases"]))
  282. # if "checks" in item.keys():
  283. # final_results["checks"] = list(set(final_results["checks"]+item["checks"]))
  284. # if "drugs" in item.keys():
  285. # final_results["drugs"] = list(set(final_results["drugs"]+item["drugs"]))
  286. # if "symptoms" in item.keys():
  287. # final_results["symptoms"] = list(set(final_results["symptoms"]+item["symptoms"]))
  288. return {"details": sorted_final_results,
  289. "score_diags": sorted_score_diags,"total_diags": total_diags,
  290. # "checks":sorted_checks, "drugs":sorted_drugs,
  291. # "total_checks":total_check, "total_drugs":total_drug
  292. }
  293. def printValidDisease(self, results, start_nodes):
  294. """
  295. 输出有效的疾病信息为Markdown格式
  296. :param results: 疾病结果字典
  297. :param start_nodes: 起始症状节点列表
  298. :return: 格式化后的Markdown字符串
  299. """
  300. log_data = ["|疾病|症状|出现次数|是否相关"]
  301. log_data.append("|--|--|--|--|")
  302. for item in results:
  303. data = results[item]
  304. data['relevant'] = False
  305. if data["count"] / len(start_nodes) > 0.5:
  306. data['relevant'] = True
  307. # 初始化疾病的父类疾病
  308. # disease_name = data["name"]
  309. # key = 'disease_name_parent_' +disease_name
  310. # cached_value = self.cache.get(key)
  311. # if cached_value is None:
  312. # out_edges = self.graph.out_edges(item, data=True)
  313. #
  314. # for edge in out_edges:
  315. # src, dest, edge_data = edge
  316. # if edge_data["type"] != '疾病相关父类':
  317. # continue
  318. # dest_data = self.entity_data[self.entity_data.index == dest]
  319. # if dest_data.empty:
  320. # continue
  321. # dest_name = self.entity_data[self.entity_data.index == dest]['name'].tolist()[0]
  322. # self.cache.set(key, dest_name)
  323. # break
  324. if data['relevant'] == False:
  325. continue
  326. log_data.append(f"|{data['name']}|{','.join(data['path'])}|{data['count']}|{data['relevant']}|")
  327. content = "疾病和症状相关性统计表格\n" + "\n".join(log_data)
  328. print(f"\n{content}")
  329. def step1(self, node_ids,node_id_names, input, allowed_types, allowed_links,max_hops,DIESEASE):
  330. """
  331. 根据症状节点查找相关疾病
  332. :param node_ids: 症状节点ID列表
  333. :param input: 患者信息输入
  334. :param allowed_types: 允许的节点类型
  335. :param allowed_links: 允许的关系类型
  336. :return: 过滤后的疾病结果
  337. """
  338. start_time = time.time()
  339. results = {}
  340. for node in node_ids:
  341. visited = set()
  342. temp_results = {}
  343. cache_key = f"symptom_ref_disease_{node}"
  344. cache_data = self.cache.get(cache_key)
  345. print(str(len(cache_data)))
  346. if cache_data:
  347. temp_results = cache_data
  348. print(cache_key+":"+node_id_names[node] +':'+ str(len(temp_results)))
  349. if results=={}:
  350. results = temp_results
  351. else:
  352. for disease_id in temp_results:
  353. path = temp_results[disease_id]["path"][0]
  354. if disease_id in results.keys():
  355. results[disease_id]["count"] = results[disease_id]["count"] + 1
  356. results[disease_id]["path"].append(path)
  357. else:
  358. results[disease_id] = temp_results[disease_id]
  359. continue
  360. queue = [(node, 0, node_id_names[node], {'allowed_types': allowed_types, 'allowed_links': allowed_links})]
  361. # 整理input的数据,这里主要是要检查输入数据是否正确,也需要做转换
  362. if input.pat_age.value > 0 and input.pat_age.type == 'year':
  363. # 这里将年龄从年转换为月,因为我们的图里面的年龄都是以月为单位的
  364. input.pat_age.value = input.pat_age.value * 12
  365. input.pat_age.type = 'month'
  366. # STEP 1: 假设start_nodes里面都是症状,第一步我们先找到这些症状对应的疾病
  367. # TODO 由于这部分是按照症状逐一去寻找疾病,所以实际应用中可以缓存这些结果
  368. while queue:
  369. temp_node, depth, path, data = queue.pop(0)
  370. temp_node = int(temp_node)
  371. # 这里是通过id去获取节点的name和type
  372. entity_data = self.entity_data[self.entity_data.index == temp_node]
  373. # 如果节点不存在,那么跳过
  374. if entity_data.empty:
  375. continue
  376. if self.graph.nodes.get(temp_node) is None:
  377. continue
  378. node_type = self.entity_data[self.entity_data.index == temp_node]['type'].tolist()[0]
  379. node_name = self.entity_data[self.entity_data.index == temp_node]['name'].tolist()[0]
  380. # print(f"node {node} type {node_type}")
  381. if node_type in DIESEASE:
  382. # print(f"node {node} type {node_type} is a disease")
  383. if self.check_diease_allowed(temp_node) == False:
  384. continue
  385. if temp_node in temp_results.keys():
  386. temp_results[temp_node]["count"] = temp_results[temp_node]["count"] + 1
  387. temp_results[temp_node]["path"].append(path)
  388. else:
  389. temp_results[temp_node] = {"type": node_type, "count": 1, "name": node_name, 'path': [path]}
  390. continue
  391. if temp_node in visited or depth > max_hops:
  392. # print(f"{node} already visited or reach max hops")
  393. continue
  394. visited.add(temp_node)
  395. # print(f"check edges from {node}")
  396. if temp_node not in self.graph:
  397. # print(f"node {node} not found in graph")
  398. continue
  399. # todo 目前是取入边,出边是不是也有用?
  400. for edge in self.graph.in_edges(temp_node, data=True):
  401. src, dest, edge_data = edge
  402. if src not in visited and depth + 1 < max_hops:
  403. # print(f"put into queue travel from {src} to {dest}")
  404. queue.append((src, depth + 1, path, data))
  405. # else:
  406. # print(f"skip travel from {src} to {dest}")
  407. print(cache_key+":"+node_id_names[node]+':'+ str(len(temp_results)))
  408. self.cache.set(cache_key, temp_results)
  409. if results == {}:
  410. results = temp_results
  411. else:
  412. for disease_id in temp_results:
  413. path = temp_results[disease_id]["path"][0]
  414. if disease_id in results.keys():
  415. results[disease_id]["count"] = results[disease_id]["count"] + 1
  416. results[disease_id]["path"].append(path)
  417. else:
  418. results[disease_id] = temp_results[disease_id]
  419. end_time = time.time()
  420. # 这里我们需要对结果进行过滤,过滤掉不满足条件的疾病
  421. new_results = {}
  422. for item in results:
  423. if self.check_sex_allowed(item, input.pat_sex.value) == False:
  424. continue
  425. if self.check_age_allowed(item, input.pat_age.value) == False:
  426. continue
  427. new_results[item] = results[item]
  428. results = new_results
  429. print('STEP 1 '+str(len(results)))
  430. print(f"STEP 1 执行完成,耗时:{end_time - start_time:.2f}秒")
  431. print(f"STEP 1 遍历图谱查找相关疾病 finished")
  432. return results
  433. def step2(self, results):
  434. """
  435. 查找疾病对应的科室、检查和药品信息
  436. :param results: 包含疾病信息的字典
  437. :return: 更新后的results字典
  438. """
  439. start_time = time.time()
  440. print("STEP 2 查找疾病对应的科室、检查和药品 start")
  441. for disease in results.keys():
  442. # cache_key = f"disease_department_{disease}"
  443. # cached_data = self.cache.get(cache_key)
  444. # if cached_data:
  445. # results[disease]["department"] = cached_data
  446. # continue
  447. if results[disease]["relevant"] == False:
  448. continue
  449. department_data = []
  450. out_edges = self.graph.out_edges(disease, data=True)
  451. for edge in out_edges:
  452. src, dest, edge_data = edge
  453. if edge_data["type"] != 'belongs_to':
  454. continue
  455. dest_data = self.entity_data[self.entity_data.index == dest]
  456. if dest_data.empty:
  457. continue
  458. department_name = self.entity_data[self.entity_data.index == dest]['name'].tolist()[0]
  459. department_data.extend([department_name] * results[disease]["count"])
  460. if department_data:
  461. results[disease]["department"] = department_data
  462. #self.cache.set(cache_key, department_data)
  463. print(f"STEP 2 finished")
  464. end_time = time.time()
  465. print(f"STEP 2 执行完成,耗时:{end_time - start_time:.2f}秒")
  466. # 输出日志
  467. log_data = ["|disease|count|department|check|drug|"]
  468. log_data.append("|--|--|--|--|--|")
  469. for item in results.keys():
  470. department_data = results[item].get("department", [])
  471. count_data = results[item].get("count")
  472. check_data = results[item].get("check", [])
  473. drug_data = results[item].get("drug", [])
  474. log_data.append(
  475. f"|{results[item].get("name", item)}|{count_data}|{','.join(department_data)}|{','.join(check_data)}|{','.join(drug_data)}|")
  476. print("疾病科室检查药品相关统计\n" + "\n".join(log_data))
  477. return results
  478. def step3(self, results):
  479. print(f"STEP 3 对于结果按照科室维度进行汇总 start")
  480. final_results = {}
  481. total = 0
  482. for disease in results.keys():
  483. disease = int(disease)
  484. # 由于存在有些疾病没有科室的情况,所以这里需要做一下处理
  485. departments = ['DEFAULT']
  486. if 'department' in results[disease].keys():
  487. departments = results[disease]["department"]
  488. # else:
  489. # edges = KGEdgeService(next(get_db())).get_edges_by_nodes(src_id=disease, category='belongs_to')
  490. # #edges有可能为空,这里需要做一下处理
  491. # if len(edges) == 0:
  492. # continue
  493. # departments = [edge['dest_node']['name'] for edge in edges]
  494. # 处理查询结果
  495. for department in departments:
  496. total += 1
  497. if not department in final_results.keys():
  498. final_results[department] = {
  499. "diseases": [results[disease].get("name", disease)],
  500. "checks": results[disease].get("check", []),
  501. "drugs": results[disease].get("drug", []),
  502. "count": 1
  503. }
  504. else:
  505. final_results[department]["diseases"] = final_results[department]["diseases"] + [
  506. results[disease].get("name", disease)]
  507. final_results[department]["checks"] = final_results[department]["checks"] + results[disease].get(
  508. "check", [])
  509. final_results[department]["drugs"] = final_results[department]["drugs"] + results[disease].get(
  510. "drug", [])
  511. final_results[department]["count"] += 1
  512. # 这里是统计科室出现的分布
  513. for department in final_results.keys():
  514. final_results[department]["score"] = final_results[department]["count"] / total
  515. print(f"STEP 3 finished")
  516. # 这里输出日志
  517. log_data = ["|department|disease|check|drug|count|score"]
  518. log_data.append("|--|--|--|--|--|--|")
  519. for department in final_results.keys():
  520. diesease_data = final_results[department].get("diseases", [])
  521. check_data = final_results[department].get("checks", [])
  522. drug_data = final_results[department].get("drugs", [])
  523. count_data = final_results[department].get("count", 0)
  524. score_data = final_results[department].get("score", 0)
  525. log_data.append(
  526. f"|{department}|{','.join(diesease_data)}|{','.join(check_data)}|{','.join(drug_data)}|{count_data}|{score_data}|")
  527. print("\n" + "\n".join(log_data))
  528. return final_results
  529. def step4(self, final_results):
  530. """
  531. 对final_results中的疾病、检查和药品进行统计和排序
  532. 参数:
  533. final_results: 包含科室、疾病、检查和药品的字典
  534. 返回值:
  535. 排序后的final_results
  536. """
  537. print(f"STEP 4 start")
  538. start_time = time.time()
  539. def sort_data(data, count=10):
  540. tmp = {}
  541. for item in data:
  542. if item in tmp.keys():
  543. tmp[item]["count"] += 1
  544. else:
  545. tmp[item] = {"count": 1}
  546. sorted_data = sorted(tmp.items(), key=lambda x: x[1]["count"], reverse=True)
  547. return sorted_data[:count]
  548. for department in final_results.keys():
  549. final_results[department]['name'] = department
  550. final_results[department]["diseases"] = sort_data(final_results[department]["diseases"])
  551. #final_results[department]["checks"] = sort_data(final_results[department]["checks"])
  552. #final_results[department]["drugs"] = sort_data(final_results[department]["drugs"])
  553. # 这里把科室做一个排序,按照出现的次数降序排序
  554. sorted_final_results = sorted(final_results.items(), key=lambda x: x[1]["count"], reverse=True)
  555. print(f"STEP 4 finished")
  556. end_time = time.time()
  557. print(f"STEP 4 执行完成,耗时:{end_time - start_time:.2f}秒")
  558. # 这里输出markdown日志
  559. log_data = ["|department|disease|check|drug|count|score"]
  560. log_data.append("|--|--|--|--|--|--|")
  561. for department in final_results.keys():
  562. diesease_data = final_results[department].get("diseases")
  563. check_data = final_results[department].get("checks")
  564. drug_data = final_results[department].get("drugs")
  565. count_data = final_results[department].get("count", 0)
  566. score_data = final_results[department].get("score", 0)
  567. log_data.append(f"|{department}|{diesease_data}|{check_data}|{drug_data}|{count_data}|{score_data}|")
  568. print("\n" + "\n".join(log_data))
  569. return sorted_final_results
  570. def step5(self, final_results, input):
  571. """
  572. 按科室汇总结果并排序
  573. 参数:
  574. final_results: 各科室的初步结果
  575. input: 患者输入信息
  576. 返回值:
  577. 返回排序后的诊断结果
  578. """
  579. print(f"STEP 5 start")
  580. start_time = time.time()
  581. diags = {}
  582. total_diags = 0
  583. for department in final_results.keys():
  584. department_factor = 0.1 if department == 'DEFAULT' else final_results[department]["score"]
  585. #当前科室权重增加0.1
  586. if input.department.value == department:
  587. department_factor = department_factor * 1.1
  588. for disease, data in final_results[department]["diseases"]:
  589. total_diags += 1
  590. key = 'disease_name_parent_' + disease
  591. # cached_data = self.cache.get(key)
  592. # if cached_data:
  593. # disease = cached_data
  594. if disease in diags.keys():
  595. diags[disease]["count"] += data["count"]
  596. diags[disease]["score"] += data["count"] * department_factor
  597. else:
  598. diags[disease] = {"count": data["count"], "score": data["count"] * department_factor}
  599. sorted_score_diags = sorted(diags.items(), key=lambda x: x[1]["score"], reverse=True)
  600. #sorted_count_diags = sorted(diags.items(), key=lambda x: x[1]["count"], reverse=True)
  601. print(f"STEP 5 finished")
  602. end_time = time.time()
  603. print(f"STEP 5 执行完成,耗时:{end_time - start_time:.2f}秒")
  604. log_data = ["|department|disease|count|score"]
  605. log_data.append("|--|--|--|--|")
  606. for department in final_results.keys():
  607. diesease_data = final_results[department].get("diseases")
  608. count_data = final_results[department].get("count", 0)
  609. score_data = final_results[department].get("score", 0)
  610. log_data.append(f"|{department}|{diesease_data}|{count_data}|{score_data}|")
  611. print("这里是经过排序的数据\n" + "\n".join(log_data))
  612. return sorted_score_diags, total_diags